Scilab Textbook Companion for
Electronic Circuits
by M. H. Tooley¹

Created by
Karan Bhargava
b.tech
Electronics Engineering
Uttarakhand Technical University
College Teacher
Vatsalya Sharma
Cross-Checked by
Ganesh R

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the ”Textbook Companion Project” section at the website http://scilab.in
Book Description

Title: Electronic Circuits
Author: M. H. Tooley
Publisher: Elsevier, New Delhi
Edition: 3
Year: 2008
ISBN: 978-81-312-0650-8
Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Equ Equation (Particular equation of the above book)

AP Appendix to Example (Scilab Code that is an Appendix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.
Contents

List of Scilab Codes 4

1 Electrical Fundamentals 9
2 Passive Components 19
3 DC Circuits 32
4 Alternating voltage and current 40
5 Semiconductors 48
6 Power Supplies 52
7 Amplifiers 55
8 Operational Amplifiers 60
9 Oscillators 63
12 The 555 timer 65
13 Radio 67
Exa 1.4	Express angle of 215 degree in radians	9
Exa 1.5	Express angle in degrees	9
Exa 1.6	Calculate the current in milliamp	10
Exa 1.7	Express the freq in Mhz of 1495 kHz radio transmitter	10
Exa 1.8	Express the capacitance in microfarad of 27000 pF	10
Exa 1.9	Express current in amp	11
Exa 1.10	Express the voltage in millivolt using exp notation	11
Exa 1.11	Calculate the voltage dropped across 33kohm with 3mA current	11
Exa 1.12	Calculate the charge transferred in 20ms by 45 microamp current	12
Exa 1.13	Calculate the current supplied to the circuit when 1500V is applied dissipating 300 mW	12
Exa 1.14	Calculate the current through resistor 12ohm with 6V battery	12
Exa 1.15	Calculate the voltage developed across 56ohm with 100mA current	13
Exa 1.16	Calculate the resistance with 15 volt applied with 1mA current	13
Exa 1.17	Calculate the resistance of 8m length cooper wire	14
Exa 1.18	Calculate the voltage drop between the ends of the 20m wire carring 5A current	14
Exa 1.19	Calculate the power supplied by 3 V battery	14
Exa 1.20	Calculate the power dissipated in 100ohm with 4V drop	15
Exa 1.21	Calculate the power dissipated in 100ohm with 4V drop	15
Exa 1.22	Calculate the electric field strength if 2 parallel plates seperated by 25mm are fed by 600V supply	16
Exa 1.23 Calculate the flux density at 50mm from st wire carrying		
20A .. 16		
Exa 1.24 Calculate the total flux by flux density 16		
Exa 1.25 Calculate the relative permittivity of steel at different		
given flux density ... 17		
Exa 1.26 Calculate the current to establish given flux 17		
Exa 2.1 Determine the tolerance of resistor 19		
Exa 2.2 Nominal current taken from supply and Max and Min		
value of supply current 19		
Exa 2.3 Determine value and type of resistor used for 100mA .		
Exa 2.4 Determine the value and tolerance of resistor of brown		
black red silver .. 20		
Exa 2.5 Determine the value and tolerance of resistor of red vi-		
olet orange gold .. 21		
Exa 2.6 Determine the value and tolerance of resistor of green		
blue black gold .. 21		
Exa 2.7 Determine the value and tolerance of resistor of red		
green black brown ... 21		
Exa 2.8 Determine the bands corresponding to 2pt kohm of tol-		
erance 2 percent .. 22		
Exa 2.9 Determine the bands corresponding to 4R7K 22		
Exa 2.10 Determine the bands corresponding to 330RG 22		
Exa 2.11 Determine the bands corresponding to R22M 23		
Exa 2.12 Determine the effective resistance in Series and Parallel		
Exa 2.13 Determine the effective resistance of the circuit 23		
Exa 2.14 Determine the resistance required to realize 50 ohm at		
2W ... 24		
Exa 2.15 Determine the resistance at 80 degree 24		
Exa 2.16 Determine the resistance at 90 degree 25		
Exa 2.17 Determine the resistor temperature coeff 25		
Exa 2.18 Determine the current flow 25		
Exa 2.19 Determine the charged stored 26		
Exa 2.20 Determine the potential diff that be applied to 47 uF-		
capacitor ... 26		
Exa 2.21 Determine the required plate area for 1 nF capacitor . 27		
Exa 2.22 Determine the value of capacitance 27		
Exa 2.23 Determine the value of capacitor 103K 27		
Exa 2.24 Determine the value of tubular capacitor with brown green brown red brown .. 28		
Exa 2.25 Determine the effective capacitance 28		
Exa 2.26 Determine the series combination of capacitons and their voltage rating ... 29		
Exa 2.27 Determine the voltage induced 29		
Exa 2.28 Determine the current that be applied to an inductor 29		
Exa 2.29 Determine the numbers of turns required 30		
Exa 2.30 Determine the parallel combination for 5mH inductor rated at 2A .. 30		
Exa 2.31 Determine the effective inductance 31		
Exa 3.1 Determine the value of current flowing between A B and value of I3 ... 32		
Exa 3.2 Determine the value of V2 and value of E3 32		
Exa 3.3 Determine the voltage and current in circuit 33		
Exa 3.4 Determine the output when no load and loaded by 10kohm 33		
Exa 3.5 Determine the value of parallel shunt resistor 34		
Exa 3.6 Determine the range of resistances that can be measured 34		
Exa 3.7 Determine the current flow in 100 ohm load 35		
Exa 3.8 Determine the voltage produced 35		
Exa 3.9 Determine the voltage produced 36		
Exa 3.10 Determine the initial charging current and current that flow 50ms and 100ms after connecting supply After what time does capacitor fully charge 36		
Exa 3.11 Determine the time taken by the capacitor to fall below 10V ... 37		
Exa 3.12 Determine the capacitor voltage 1 minute later 37		
Exa 3.13 Determine the C R values for sq wave of 1kHz 38		
Exa 3.14 Determine the C R values for sq wave of 1kHz 38		
Exa 3.15 Determine the current in the inductor after supply first connected ... 38		
Exa 3.16 Determine the inductor voltage 20ms after supply first connected .. 39		
Exa 4.1 Determine the instantaneous voltage 40		
Exa 4.2 Determine the time period of 400 Hz waveform 40		
Exa 4.3 Determine the freq of 40 ms waveform 41		
Exa 4.4 Determine the peak value of 240V rms 41		
Exa 4.5 Determine the rms value of 50mA peak to peak 41		
Exa 4.6 Determine the rms current 42		
Exa 4.7 Determine the reactance of 1uF at 100Hz and 10kHz 42		
Exa 4.8 Determine the current flow in capacitor 43		
Exa 4.9 Determine the reactance of 1mH at 100Hz and 10kHz 43		
Exa 4.10 Determine the reactance of 1mH at 100Hz and 10kHz 43		
Exa 4.11 Determine the impedance of the circuit and current from supply 44		
Exa 4.12 Determine the power factor of choke and current from supply 44		
Exa 4.13 Determine the value of capacitance required 45		
Exa 4.14 Determine the current supplied and voltage developed across 100 ohm 45		
Exa 4.15 Determine the value of secondary voltage 46		
Exa 4.16 Determine the number of secondary turns and primary current .. 46		
Exa 5.1 Determine the resistance of diode when forward current is given and when forward voltage is given 48		
Exa 5.2 Determine the series resistor required 48		
Exa 5.3 Determine the Ie emitter current and hfe 49		
Exa 5.4 Determine the Ie emitter current and hfe 49		
Exa 5.5 Determine the Ib base current and hfe 50		
Exa 5.6 Determine the hfe required and collector power dissipation .. 50		
Exa 5.7 Determine the I base current and change in collector current .. 51		
Exa 5.8 Determine the change in drain current 51		
Exa 6.1 Determine the peak voltage that appear across load 52		
Exa 6.2 Determine the amt of ripple at output 52		
Exa 6.3 Determine the amt of ripple at output 53		
Exa 6.4 Determine the series resistor for operation in conjunction with 9V 53		
Exa 6.5 Determine equiv output resistance and regulation of power supply 54		
Exa 7.1 Determine voltage gain and current gain and power gain 55		
Exa 7.2 Determine voltage gain and upper and lower cutoff freq .. 55		
Exa 7.3 Determine overall voltage gain with negative feedback .. 56		
Exa 7.4 Determine percentage increase in overall voltage gain .. 56		
Exa 7.5 Determine amount of feedback required 57		
Exa 7.6	Determine output voltage produced by input signal of 10mV	57
Exa 7.7	Determine of load resistance required	57
Exa 7.8	Determine static value of current gain and voltage gain	58
Exa 7.9	Determine quiescent value of collector current and voltage and peak to peak output voltage	58
Exa 8.1	Determine the value of open loop voltage gain	60
Exa 8.2	Determine the value of input current	60
Exa 8.3	Determine the slew rate of device	61
Exa 8.4	Determine the time taken to change level	61
Exa 8.6	Determine the circuit parameters using opamps	61
Exa 9.1	Determine the freq of oscillation	63
Exa 9.2	Determine the output freq	63
Exa 9.3	Determine the value of R3 and R4	64
Exa 12.1	Determine the parameters of timer circuit	65
Exa 12.2	Determine the parameters of timer circuit that produce 5V	65
Exa 12.3	Design of pulse generator	66
Exa 12.4	Design of 5V square wave generator	66
Exa 13.1	Determine the frequency of radio signal of wavelength 15m	67
Exa 13.2	Determine the frequency of radio signal of 150MHz	67
Exa 13.3	Determine the velocity of propagation of radio signal of 30MHz and 8m wavelength	68
Exa 13.4	Determine the two possible BFO freq	68
Exa 13.5	Determine the range the local oscillator be tuned	68
Exa 13.6	Determine the range the local oscillator be tuned	69
Exa 13.7	Determine the radiated power	69
Exa 13.8	Determine the power and radiation efficiency	70
Chapter 1
Electrical Fundamentals

Scilab code Exa 1.4 Express angle of 215 degree in radians

```
1 //Exa:1.4
2 clc;
3 clear;
4 close;
5 ang_d=215; // given
6 ang_r=ang_d*%pi/180;
7 printf("%f degree angle is %f radians",ang_d,ang_r);
```

Scilab code Exa 1.5 Express angle in degrees

```
1 //Exa:1.5
2 clc;
3 clear;
4 close;
5 ang_r=2.5; // given
6 ang_d=2.5*180/%pi; // angle in degrees
7 printf("%f radians angle is %f degrees",ang_r,ang_d);
```
Scilab code Exa 1.6 Calculate the current in milliamp

1 //Exa:1.6
2 clc;
3 clear;
4 close;
5 i_amp=0.075;//given
6 i_milamp=i_amp*1000;//current in milliamp.
7 printf("%f amp current is %f mA", i_amp, i_milamp);

Scilab code Exa 1.7 Express the freq in Mhz of 1495 kHz radio transmitter

1 //Exa:1.7
2 clc;
3 clear;
4 close;
5 fq_khz=1495;//given
6 fq_Mhz=fq_khz/1000;
7 printf("%f kHz frequency is %f MHz", fq_khz, fq_Mhz);

Scilab code Exa 1.8 Express the capacitance in microfarad of 27000 pF

1 //Exa:1.8
2 clc;
3 clear;
4 close;
5 c_pF=27000;//given
6 c_uF=c_pF/1000;
7 printf("%f picofarad capacitance is %f microfarad", c_pF, c_uF);
Scilab code Exa 1.9 Express current in amp

1 //Exa:1.9
2 clc;
3 clear;
4 close;
5 c_mA=7.25; //given
6 c_A=c_mA*1000;
7 printf("%f milliampere current is %f ampere",c_mA,c_A);

Scilab code Exa 1.10 Express the voltage in millivolt using exp notation

1 //Exa:1.10
2 clc;
3 clear;
4 close;
5 vg_v=3.75*10^-6; //given
6 vg_mv=vg_v*1000;
7 printf("%f volt voltage is %e mV",vg_v,vg_mv);

Scilab code Exa 1.11 Calculate the voltage dropped across 33kohm with 3mA current

1 //Exa:1.11
2 clc;
3 clear;
4 close;
5 r=33000; //in ohms
\textbf{Scilab code Exa 1.12} Calculate the charge transferred in 20ms by 45 microamp current

1 \texttt{/Ex:1.12}
2 \texttt{clc;}
3 \texttt{clear;}
4 \texttt{close;}
5 \texttt{t=20*10^{-3};// in sec}
6 \texttt{i=45*10^{-6};// in amp}
7 \texttt{q=i*t*10^{-9};}
8 \texttt{printf("Charge transferred = \text{\%f nC},q");}

\textbf{Scilab code Exa 1.13} Calculate the current supplied to the circuit when 1500V is applied dissipating 300 mW

1 \texttt{/Ex:1.13}
2 \texttt{clc;}
3 \texttt{clear;}
4 \texttt{close;}
5 \texttt{p=0.3;\text{in watts}}
6 \texttt{v=1500;\text{in volts}}
7 \texttt{i=(p/v)*10^{-6};}
8 \texttt{printf("Current supplied = \text{\%d microamp},i");}

\textbf{Scilab code Exa 1.14} Calculate the current through resistor 12ohm with 6V battery
1 //Ex:1.14
2 clc;
3 clear;
4 close;
5 r=12; //in ohms
6 v=6; //in volts
7 i=(v/r);
8 printf("Current = %f Amp",i);

Scilab code Exa 1.15 Calculate the voltage developed across 56ohm with 100mA current

1 //Ex:1.15
2 clc;
3 clear;
4 close;
5 r=56; //in ohms
6 i=0.1; //in amp
7 v=i*r;
8 printf("Voltage dropped = %f volts",v);

Scilab code Exa 1.16 Calculate the resistance with 15 volt applied with 1mA current

1 //Ex:1.16
2 clc;
3 clear;
4 close;
5 v=15; //in volts
6 i=0.001; //in amp
7 r=v/i;
8 printf("Resistance = %d ohms",r);
Scilab code Exa 1.17 Calculate the resistance of 8m length cooper wire

```scilab
//Ex:1.17
clc;
clear;
close;
p=1.724*10^-8;//in ohm−meter
l=8;//in meters
a=1*10^-6;//in sq. meter
r=(p*l)/a;
printf("Resistance = %f ohms",r);
```

Scilab code Exa 1.18 Calculate the voltage drop between the ends of the 20m wire carring 5A current

```scilab
//Ex:1.18
clc;
clear;
close;
p=1.724*10^-8;//in ohm−meter
l=20;//in meters
a=1*10^-6;//in sq. meter
i=5;//in amperes
r=(p*l)/a;
v=i*r;
printf("Voltage dropped = %f volts",v);
```

Scilab code Exa 1.19 Calculate the power supplied by 3 V battery
Scilab code Exa 1.19 Calculate the power supplied in 100ohm with 3V drop

```matlab
//Ex:1.19
clc;
clear;
close;
v=3; // in volts
i=1.5; // in amperes
p=v*i;
printf("Power supplied = %f watts",p);
```

Scilab code Exa 1.20 Calculate the power dissipated in 100ohm with 4V drop

```matlab
//Ex:1.20
clc;
clear;
close;
v=4; // in volts
r=100; // in ohms
p=(v^2)/r;
printf("Power dissipated = %f watts",p);
```

Scilab code Exa 1.21 Calculate the power dissipated in 100ohm with 4V drop

```matlab
//Ex:1.21
clc;
clear;
close;
i=20*10^-3; // in amps
r=1000; // in ohms
p=(i^2)*r;
printf("Power dissipated = %f watts",p);
```
Scilab code Exa 1.22 Calculate the electric field strength if 2 parallel plates seperated by 25mm are fed by 600V supply

1 //Ex:1.22
2 clc;
3 clear;
4 close;
5 v=600; //in volts
6 d=25*10^-3; //in meters
7 E=(v)/d;
8 printf("Electric Field Strength = %d kV/m",E/1000);

Scilab code Exa 1.23 Calculate the flux density at 50mm from st wire carrying 20A

1 //Ex:1.23
2 clc;
3 clear;
4 close;
5 u=4*%pi*10^-7; //in H/m
6 i=20; //in amps
7 d=50*10^-3; //in meters
8 B=(u*i)/(2*%pi*d);
9 printf("Flux Density = %e Tesla",B);

Scilab code Exa 1.24 Calculate the total flux by flux density

1 //Ex:1.24
2 clc;
Scilab code Exa 1.25 Calculate the relative permitivity of steel at different given flux density

```scilab
//Ex:1.25
clear;
close;
B=0.6; // in Tesla
u1=B1/800;
u_r1=u1/(4*pi*10^-7);
printf("relative permitivity at 0.6T = %f",u_r1);
B2=1.6; // in Tesla
u2=0.2/4000;
u_r2=u2/(4*pi*10^-7);
printf("relative permitivity at 1.6T = %f",u_r2);
```

Scilab code Exa 1.26 Calculate the current to establish given flux

```scilab
//Ex:1.26
clear;
close;
flux=0.8*10^-3; // in Tesla
a=(500*10^-6); // in sq. meter
l=0.6; // in meter
N=800;
```
9 \(B = \text{flux/a}; \)
10 \textbf{printf}("Flux Density = \%e Tesla", B);
11 \text{H}=3500; // in A/m
12 \text{i}=(\text{H*1})/\text{N};
13 \textbf{printf}("\n Current required = \%f amp.s", \text{i});
Chapter 2
Passive Components

Scilab code Exa 2.1 Determine the tolerance of resistor

```plaintext
//Ex:2.1
clear;
close;
marked=220; // in ohms
measured=207; // in ohms
err=marked-measured;
tol=(err/marked)*100;
printf("Tolerance = %f \%%",tol);
```

Scilab code Exa 2.2 Nominal current taken from supply and Max and Min value of supply current

```plaintext
//Ex:2.2
clear;
close;
r=39; // in ohms
```
6 \textit{v=9}; // in volts
7 i=(v/r); // in Amps
8 \texttt{printf} ("Current = \%d mA", i*1000);
9 tol=0.1; // i.e. 10%
10 r_{\text{min}}=r-(tol\times r);
11 i_{\text{max}}=v/r_{\text{min}};
12 r_{\text{max}}=r+(tol\times r);
13 i_{\text{min}}=v/r_{\text{max}};
14 \texttt{printf} ("\nMax. Current = \%f mA & Min. Current= \%f mA"
, i_{\text{max}}\times 1000, i_{\text{min}}\times 1000);

\begin{verbatim}
Scilab code Exa 2.3 Determine value and type of resistor used for 100mA

1 //Ex:2.3
2 clc;
3 clear;
4 close;
5 v=28; // in volts
6 i=0.1; // in A
7 r=v/i;
8 p=v*i;
9 \texttt{printf} ("Resistance Value = \%f ohms & Power
dissipated = \%f W", r, p);

\end{verbatim}

Scilab code Exa 2.4 Determine the value and tolerance of resistor of brown
black red silver

1 //Ex:2.4
2 clc;
3 clear;
4 close;
5 r=10*(10^{-2});
6 \texttt{printf} ("Resistor value = \%d ohm", r);

20
Scilab code Exa 2.5 Determine the value and tolerance of resistor of red violet orange gold

```scilab
//Ex: 2.5
clc;
clear;
close;
r = 27*(10^3);
printf("Resistor value = %.0f ohm", r);
printf("\nTolerance = 5 \%\%");
```

Scilab code Exa 2.6 Determine the value and tolerance of resistor of green blue black gold

```scilab
//Ex: 2.6
clc;
clear;
close;
r = 56*(10^0);
printf("Resistor value = %.0f ohm", r);
printf("\nTolerance = 5 \%\%");
```

Scilab code Exa 2.7 Determine the value and tolerance of resistor of red green black brown

```scilab
//Ex: 2.7
clc;
clear;
```
Scilab code Exa 2.8 Determine the bands corresponding to 2pt kohm of tolerance 2 percent

```scilab
clc;
clear;
close;
r=22*(10^-3);
printf(“Bands are Red, Red, Red, Red”);
```

Scilab code Exa 2.9 Determine the bands corresponding to 4R7K

```scilab
clc;
clear;
close;
printf(“Resistance = 4.7 ohm with 10% tolerance”);
```

Scilab code Exa 2.10 Determine the bands corresponding to 330RG

```scilab
clc;
clear;
close;
printf(“Resistance = 330 ohms with 2% tolerance”);
```
Scilab code Exa 2.11 Determine the bands corresponding to R22M

```matlab
//Ex: 2.11
clc;
clear;
close;
printf("Resistance = 0.22 ohm with 20% tolerance");
```

Scilab code Exa 2.12 Determine the effective resistance in Series and Parallel

```matlab
//Ex: 2.12
clc;
clear;
close;
r1=22; //in ohms
r2=47; //in ohms
r3=33; //in ohms
r_ser=r1+r2+r3;
printf("Effective resistance in series = \%d ohms", r_ser);
r_parel=((1/r1)+(1/r2)+(1/r3))^\-1;
printf("\nEffective resistance in parallel = \%f ohms",r_parel);
```

Scilab code Exa 2.13 Determine the effective resistance of the circuit

```matlab
//Ex: 2.13
clc;
```
3 clear;
4 close;
5 r1=4.7;// in ohms
6 r2=47;// in ohms
7 r3=12;// in ohms
8 r4=27;// in ohms
9 r5=r3+r4;
10 r_parel=((1/r5)+(1/r2))^ -1;
11 r_eff=r_parel+r1;
12 printf("Effective resistance = %d ohms",r_eff);

Scilab code Exa 2.14 Determine the resistance required to realize 50 ohm at 2W

1 //Ex:2.14
2 clc;
3 clear;
4 close;
5 printf("Two 100 ohm resistor of 1 W");

Scilab code Exa 2.15 Determine the resistance at 80 degree

1 //Ex:2.15
2 clc;
3 clear;
4 close;
5 temp_coeff=0.001;// in per degree centigrade
6 r_o=1500;// in ohm
7 t=80;// temperature diff.
8 r_t=r_o*(1+(temp_coeff)*t)
9 printf("Resistance at %d degree = %d ohms",t,r_t);
Scilab code Exa 2.16 Determine the resistance at 90 degree

```
1  //Ex:2.16
2  clc;
3  clear;
4  close;
5  temp_coeff=0.0005; //in per degree centigrade
6  r_t1=680; //in ohm
7  t1=20; //temperature diff.
8  t2=90;
9  r_o=r_t1/(1+(temp_coeff)*t1);
10 r_t2=r_o*(1+(temp_coeff)*t2);
11 printf("Resistance at %d degree = %f ohms","t2,r_t2);
```

Scilab code Exa 2.17 Determine the resistor temperature coeff

```
1  //Ex:2.17
2  clc;
3  clear;
4  close;
5  r_o=40; //resis at 0 degree
6  r_t=44; //at 100 degree
7  t=100; //temperature diff.
8  temp_coeff=(1/t)*((r_t/r_o)-1);
9  printf("Temperature Coefficient = %f per degree centigrade",temp_coeff);
```

Scilab code Exa 2.18 Determine the current flow
Scilab code Exa 2.18 Determine the charged stored

```matlab
//Ex:2.18
clc;
clear;
close;
V_1=50;
V_2=10;
dV=V_1-V_2; //in volts
dt=0.1; //in seconds
C=22*10^-6;
i=C*(dV/dt)*1000; //in mA
printf("Current flow = %f milliAmps",i);
```

Scilab code Exa 2.19 Determine the charged stored

```matlab
//Ex:2.19
clc;
clear;
close;
C=10*10^-6;
V=250; //in volts
Q=V*C*1000; //in millicoulomb
printf("Charged stored =%f mC",Q);
```

Scilab code Exa 2.20 Determine the potential diff that be applied to 47 uF capacitor

```matlab
//Ex:2.20
clc;
clear;
close;
C=47*10^-6; //in farads
W=4; //energy in joules
V=sqrt(W/(0.5*C));
```
Scilab code Exa 2.21 Determine the required plate area for 1 nF capacitor

```scilab
//Ex:2.21
clc;
clear;
close;
E_o=8.85*10^-12;
E_r=5.4;
C=1*10^-9;
d=0.1*10^-3;
A=(C*d)/(E_o*E_r)*10^4;
printf("Required plate area = %f sq. cm",A);
```

Scilab code Exa 2.22 Determine the value of capacitance

```scilab
//Ex:2.22
clc;
clear;
close;
E_o=8.85*10^-12;
E_r=4.5;
n=6;//no. of plates
d=0.2*10^-3;//in meter
A=20*10^-4;//in sq.meter
C={(E_o*E_r*(n-1)*A)/d}*10^-11;
printf("Capacitance = %d pF",C);
```

Scilab code Exa 2.23 Determine the value of capacitor 103K
Scilab code Exa 2.24 Determine the value of tubular capacitor with brown green brown red brown

```scilab
//Ex:2.24
clc;
clear;
close;
printf("Capacitance = 150 pF of 2\% tolerance at 100 V");
```

Scilab code Exa 2.25 Determine the effective capacitance

```scilab
//Ex:2.25
clc;
clear;
close;
C1=2; // in nF
C2=4; // in nF
C3=2;
C4=4;
C_a=C1+C2;
C_b=C_a*C3/(C_a+C3);
C_eff=C4+C_b;
printf("Capacitance = %fnF", C_eff);
```
Scilab code Exa 2.26 Determine the series combination of capacitors and their voltage rating

```scilab
clc;
clear;
close;
C=100; //in uF
C_eff=C*C/(C+C);
printf("Two capacitors of %d uF be in parallel used to make %d uF capacitance",C,C_eff);
```

Scilab code Exa 2.27 Determine the voltage induced

```scilab
clc;
clear;
close;
L=600*10^-3; //in H
I1=6; //in A
I2=2; //in A
dI=I1-I2;
dt=250*10^-3; //in sec.
E=-L*(dI/dt);
printf("Induced voltage = %f volts",E);
```

Scilab code Exa 2.28 Determine the current that be applied to an inductor

```scilab
clc;
clear;
close;
```
Scilab code Exa 2.29 Determine the numbers of turns required

```scilab
//Ex:2.29
clc;
clear;
close;
u_o=12.57*10^-7;
u_r=500;
A=15*10^-4;//area of cross-section in sq. meters
l=20*10^-2;//length
L=100*10^-3;//in henry
n=sqrt((L*l)/(u_r*u_o*A));
printf("Inductor requires %d turns of wire",n);
```

Scilab code Exa 2.30 Determine the parallel combination for 5mH inductor rated at 2A

```scilab
//Ex:2.30
clc;
clear;
close;
//L=(L1*L2)/(L1+L2)
L_eq=5;//in millihenry
printf("Inductor of 10 mH wired in parallel would provide %d mH",L_eq);
```
Scilab code Exa 2.31 Determine the effective inductance

```scilab
//Ex:2.31
clc;
clear;
close;
L1=60; //in mH
L2=60; //in mH
L_a=L1+L2;
L3=120; //in mH
L_b=L_a*L3/(L_a+L3);
L4=50; //in mH
L_eq=L4+L_b;
printf("Equivalent Inductance = %d mH",L_eq);
```

Chapter 3
DC Circuits

Scilab code Exa 3.1 Determine the value of current flowing between A B and value of I₃

```scilab
//Ex:3.1
clc;
clear;
close;
i1=1.5;
i2=2.7; // in amp.s
i5=i1+i2;
i4=3.3;
i3=i4+i5;
printf("Current b/w A & B = %f A",i5);
printf("\nCurrent I3 = %f A",i3);
```

Scilab code Exa 3.2 Determine the value of V₂ and value of E₃

```scilab
//Ex:3.2
clc;
clear;
```
Scilab code **Exa 3.3** Determine the voltage and current in circuit

```scilab
//Ex:3.3
close;
E1=6;
E2=3;
V2=E1-E2;
V1=4.5;
E3=V1-E2;
printf("Value of V2 = %f A",V2);
printf("\n Value of E3 = %f A",E3);
```

Scilab code **Exa 3.4** Determine the output when no load and loaded by 10kohm

```scilab
//Ex:3.4
close;
V1=7.5; //in volts
V2=4.5;
V3=4.5;
r1=110; //in ohms
r2=33;
r3=22;
i1=V1/r1;
i2=V2/r2;
i3=V3/r3;
printf("Current I1 = %f A",i1);
printf("\n Current I2 = %f A",i2);
printf("\n Current I3 = %f A",i3);
```
clear;
close;
V_in=5; // in volts
r1=4000;
r2=1000;
r_p=r1*r2/(r1+r2);
V_out=V_in*(r2/(r1+r2));
V_out_p=V_in*(r_p/(r_p+r2));
printf("output voltage at no load = %.2f A",V_out);
printf("\noutput voltage when loaded by 10kohms = %.2f A",V_out_p);

Scilab code Exa 3.5 Determine the value of parallel shunt resistor

//Ex: 3.5
clc;
clear;
close;
I_in=5; // in mA
R_m=100;
I_m=1;
R_s=R_m*I_m/(I_in-1);
printf("Value of parallel shunt resistor = %.0f A",R_s);

Scilab code Exa 3.6 Determine the range of resistances that can be measured

//Ex: 3.6
clc;
clear;
close;
r1=100;
Scilab code Exa 3.7 Determine the current flow in 100 ohm load

```plaintext
//Ex:3.7
c1c;
clear;
close;
E=10;
r1=500;
r2=600;
r3=500;
r4=400;
V_a=E*(r2/(r1+r2));
V_b=E*(r4/(r3+r4));
V_oc=V_a-V_b;
r=((r1*r2)/(r1+r2))+((r3*r4)/(r3+r4));
i=(V_oc/(r+100))*1000;
printf("Current flow in 100 ohm resistor = %f mA",i);
```

Scilab code Exa 3.8 Determine the voltage produced

```plaintext
//Ex:3.8
c1c;
clear;
close;
I_sc=19; //in uA
R=1000;
```
Scilab code Exa 3.9 Determine the voltage produced

```scilab
//Ex:3.9
clc;
clear;
close;
c =1*10^-6; //in farads
r=3.3*10^-6; //in ohms
t=1; //in sec.
V_s=9; //in volts
V_c=V_s*(1-%e^(-t/(r*c)));
printf("Voltage produced = %f V",V_c);
```

Scilab code Exa 3.10 Determine the initial charging current and current that flow 50ms and 100ms after connecting supply After what time does capacitor fully charge

```scilab
//Ex:3.10
clc;
clear;
close;
c =100*10^-6; //in farads
r=1*10^-3; //in ohms
t1=50*10^-3; //in sec.
t2=100*10^-3; //in sec.
V_s=350; //in volts
i1=(V_s/1000)*(%e^(-t1/(r*c)));
i2=(V_s/1000)*(%e^(-t2/(r*c)));
```
12 printf("Charging current after %f sec = %f A\", t1, i1)
13 printf("\nCharging current after %f sec = %f A\", t2, i2);

Scilab code Exa 3.11 Determine the time taken by the capacitor to fall below 10V

1 //Ex:3.11
2 clc;
3 clear;
4 close;
5 c=10*10^{-6}; // in farads
6 r=47*10^{3}; // in ohms
7 V_s=20; // in volts
8 V_c=10;
9 t=-c*r*log(V_c/V_s);
10 printf("time taken = %f sec.\", t);

Scilab code Exa 3.12 Determine the capacitor voltage 1 minute later

1 //Ex:3.12
2 clc;
3 clear;
4 close;
5 c=150*10^{-6}; // in farads
6 r=2*10^{6}; // in ohms
7 V_s=150; // in volts
8 V_c=0.8187*V_s;
9 printf("Capacitor voltage = %f V\", V_c);
Scilab code Exa 3.13 Determine the C R values for sq wave of 1kHz

```scilab
1 //Ex:3.13
2 clc;
3 clear;
4 close;
5 r=10*10^-3;//in ohms
6 t=1*10^-3;
7 c=(0.1*t/r)*10^9;
8 printf("Capacitor = %d nF",c);
```

Scilab code Exa 3.14 Determine the C R values for sq wave of 1kHz

```scilab
1 //Ex:3.14
2 clc;
3 clear;
4 close;
5 r=10*10^-3;//in ohms
6 t=1*10^-3;
7 c=(10*t/r)*10^6;
8 printf("Capacitor = %d uF",c);
```

Scilab code Exa 3.15 Determine the current in the inductor after supply first connected

```scilab
1 //Ex:3.15
2 clc;
3 clear;
4 close;
5 L=6;//in henry
6 r=24;//in ohms
7 t=0.1;//in sec.
8 V_s=12;//in volts
```
Scilab code Exa 3.16 Determine the inductor voltage 20ms after supply first connected

```scilab
//Ex:3.16
clc; clear; close;
V_s=5; // in volts
V_c=0.8647*V_s;
printf("Inductor voltage = %f V",V_c);
```

```scilab
i=(V_s/r)*(1-%e^(-t*r/L));
printf("current = %f A",i);
```
Chapter 4

Alternating voltage and current

Scilab code Exa 4.1 Determine the instantaneous voltage

```matlab
//Ex: 4.1
clc;
clear;
close;
V_m = 20; // in volts
f = 50; // in Hz
t1 = 2.5*10^-3;
t2 = 15*10^-3;
V1 = V_m * sin(2*pi*f*t1);
V2 = V_m * sin(2*pi*f*t2);
printf("Voltage at 2.5 ms = %f V", V1);
printf("\nVoltage at 15 ms = %f V", V2);
```

Scilab code Exa 4.2 Determine the time period of 400 Hz waveform

```matlab
//Ex: 4.2
clc;
clear;
```
4 close;
5 f=400; // in Hz
6 T=1/f;
7 printf("Time period of %d Hz waveform = %f sec",f,T);

Scilab code Exa 4.3 Determine the freq of 40 ms waveform

1 //Ex:4.3
2 clc;
3 clear;
4 close;
5 T=40*10^-3; // in Hz
6 f=1/T;
7 printf("Frequency of 40 ms waveform = %f Hz",f);

Scilab code Exa 4.4 Determine the peak value of 240V rms

1 //Ex:4.4
2 clc;
3 clear;
4 close;
5 V_rms=240; // in Volts
6 V_pk=1.414*V_rms;
7 printf("Peak voltage of %d V RMS voltage = %f V", V_rms,V_pk);

Scilab code Exa 4.5 Determine the rms value of 50mA peak to peak

1 //Ex:4.5
Scilab code Exa 4.6 Determine the rms current

```scilab
//Ex:4.6
clc;
clear;
close;
V=10; //pk–pk voltage
r=1000; //ohms
I_pk=V/r; //in Amps
I_rms=0.353*I_pk*1000; //milliamps
printf("RMS current of 10V peak–peak voltage = %f mA", I_rms);
```

Scilab code Exa 4.7 Determine the reactance of 1uF at 100Hz and 10kHz

```scilab
//Ex:4.7
clc;
clear;
close;
c=1*10^-6;
f1=100;
f2=10000;
X_c1=1/(2*%pi*f1*c);
X_c2=1/(2*%pi*f2*c);
printf("Reactance at 100Hz = %f mA", X_c1);
```
printf("\n Reactance at 10kHz = %f mA", X_c2);

Scilab code Exa 4.8 Determine the current flow in capacitor

//Ex:4.8
clc;
clear;
close;
V=240;
c=100*10^-9;
f=50;
X_c=1/(2*pi*f*c);
I_c=V/X_c;
printf(" Current flow = %f A", I_c);

Scilab code Exa 4.9 Determine the reactance of 1mH at 100Hz and 10kHz

//Ex:4.9
clc;
clear;
close;
L=1*10^-3;
f1=100;
f2=10000;
X_L1=(2*pi*f1*L);
X_L2=(2*pi*f2*L);
printf(" Reactance at 100Hz = %f ohm", X_L1);
printf(" Reactance at 10kHz = %f ohm", X_L2);

Scilab code Exa 4.10 Determine the reactance of 1mH at 100Hz and 10kHz
Scilab code Exa 4.11 Determine the impedance of the circuit and current from supply

```scilab
//Ex:4.11
clc;
clear;
close;
C=2*10^-6;
f=400;
V=115;
r=199;
x_C=1/(2*%pi*f*C);
z=sqrt(r^2+x_C^2);
s=%V/z;
printf("Reactance = %f ohm",x_C);
printf("\n Current = %f A",I_s);
```

Scilab code Exa 4.12 Determine the power factor of choke and current from supply

```scilab
//Ex:4.12
```
Scilab code Exa 4.13 Determine the value of capacitance required

```
//Ex: 4.13
clc;
clear;
close;
L=100*10^-3;
f=400;
C=(1/(4*%pi*%pi*f*f*L))*10^-6;
printf("Capacitance required = %f uF",C);
```

Scilab code Exa 4.14 Determine the current supplied and voltage developed across 100 ohm

```
//Ex: 4.14
clc;
clear;
close;
L=20*10^-3;
f=2000;
```
V = 1.5;
r = 100;
C = 10 * 10^-9;
X_L = (2 * pi * f * L);
X_C = 1 / (2 * pi * f * C);
z = sqrt(r^2 + (X_L - X_C)^2);
i = V / z;
v = i * r;
printf("Current supplied = %f mA", i);
printf("Voltage developed = %f V", v);

Scilab code Exa 4.15 Determine the value of secondary voltage

// Ex: 4.15
clc;
clear;
close;
N_s = 120;
V_p = 220;
N_p = 2000;
V_s = N_s * V_p / N_p;
printf("Secondary voltage = %f V", V_s);

Scilab code Exa 4.16 Determine the number of secondary turns and primary current

// Ex: 4.16
clc;
clear;
close;
V_p = 200;
V_s = 10;
N_p = 1200;
8 \text{\textit{N}}_s = \text{\textit{N}}_p \times \frac{\text{\textit{V}}_s}{\text{\textit{V}}_p}; \\
9 \text{\textit{i}}_s = 2.5; \\
10 \text{\textit{i}}_p = \text{\textit{N}}_s \times \frac{\text{\textit{i}}_s}{\text{\textit{N}}_p}; \\
11 \texttt{printf(}"\text{Secondry turns = } %d \text{ "},\text{\textit{N}}_s\texttt{);} \\
12 \texttt{printf(}"\text{\texttt{\textbackslash nprimary current = } %f A"},\text{\textit{i}}_p\texttt{);} \\

\text{\textit{\textbackslash n}}
Chapter 5

Semiconductors

Scilab code Exa 5.1 Determine the resistance of diode when forward current is given and when forward voltage is given

```scilab
1 //Ex:5.1
2 clc;
3 clear;
4 close;
5 v1=0.43; //volts
6 i1=2.5*10^-3; //in Amps.
7 v2=0.65; //volts
8 i2=7.4*10^-3; //in Amps.
9 r1=v1/i1;
10 r2=v2/i2;
11 printf("Diode resistance for 2.5A current = %d ohms",r1);
12 printf("\nDiode resistance for 0.65V = %f ohms",r2);
```

Scilab code Exa 5.2 Determine the series resistor required
Scilab code Exa 5.3 Determine the Ie emitter current and hfe

```
//Ex:5.3
clc;
clear;
close;
I_c=30;  // in mA
I_b=0.6;
I_e=I_c+I_b;
hfe=I_c/I_b;
printf("Emitter current = %f ohms & hfe = %d", I_e, hfe);
```

Scilab code Exa 5.4 Determine the Ie emitter current and hfe

```
//Ex:5.4
clc;
clear;
close;
I_c=30;  // in mA
I_b=0.6;
I_e=I_c+I_b;
hfe=I_c/I_b;
```
9 `printf("Emitter current = \%f ohms & hfe = \%d",
 I_e,hfe);

Scilab code Exa 5.5 Determine the Ib base current and hfe
1 //Ex: 5.5
2 clc;
3 clear;
4 close;
5 I_e=98; // in mA
6 I_c=97;
7 I_b=I_e-I_c;
8 hfe=I_c/I_b;
9 `printf("Emitter current = \%d mA & hfe = \%d",
 I_b,hfe);

Scilab code Exa 5.6 Determine the hfe required and collector power dissipation
1 //Ex: 5.6
2 clc;
3 clear;
4 close;
5 I_c=1.5; // in A
6 I_b=50*10^-3;
7 V_ce=6; // volts
8 hfe=I_c/I_b;
9 P=I_c*V_ce;
10 `printf("hfe required = \%d",hfe);
11 `printf("\n collector power dissipation = \%d W",P);

50
Scilab code Exa 5.7 Determine the I base current and change in collector current

```scilab
1  //Ex:5.7
2  clc;
3  clear;
4  close;
5  hfe=200
6  I_c=10*10^-3;
7  dI_b=I_c/hfe;
8  dI_c=hfe*dI_b/100;
9  printf("Base current = %f A ",dI_b);
10 printf("\nChange in collector current = %f mA",dI_c);
```

Scilab code Exa 5.8 Determine the change in drain current

```scilab
1  //Ex:5.8
2  clc;
3  clear;
4  close;
5  dV_gs=0.025;
6  g_fs=-0.5;
7  dI_d=dV_gs*g_fs;// in mA
8  I_d1=50*10^-3;// in mA
9  I_d2=dI_d+I_d1;
10 printf("Change in drain current = %f A",dI_d);
11 printf("\nNew value of drain current = %f A",I_d2);
```
Chapter 6

Power Supplies

Scilab code Exa 6.1 Determine the peak voltage that appear across load

```matlab
//Ex:6.1
clc;
clear;
close;
V_p=220;
V_s = V_p / 44;
V_pk = 1.414 * V_s; % volts
V_l = V_pk - 0.6;
printf("Peak voltage that appear across load = %f V", V_l);
```

Scilab code Exa 6.2 Determine the amt of ripple at output

```matlab
//Ex:6.2
clc;
clear;
close;
X_c = 3.18;
```
R = 100;
V_rip = 1* (X_c/sqrt(R^2+X_c^2));
printf("Ripple voltage = %f V", V_rip);

Scilab code Exa 6.3 Determine the amt of ripple at output

clc;
clear;
close;
f = 50;
L = 10;
X_l = 2*%pi*f*L;
X_c = 3.18;
V_rip = 1* (X_c/sqrt(X_l^2+X_c^2));
printf("Ripple voltage = %f V", V_rip);

Scilab code Exa 6.4 Determine the series resistor for operation in conjunction with 9V

clc;
clear;
close;
R_l = 400;
V_in = 9;
V_z = 5;
P_z_max = 0.5;
R_s_max = R_l*((V_in/V_z)-1);
R_s_min = ((V_z*V_in)-V_z^2)/P_z_max;
printf("Suitable value of resistor = %d ohm", (R_s_max+R_s_min)/2);
Scilab code Exa 6.5 Determine equiv output resistance and regulation of power supply

```scilab
//Ex: 6.5
clc;
clear;
close;
dI_i = 20;
dV_o = 0.5;
dV_o_reg = 0.1;
dI_o = 2;
R_out = dV_o / dI_o;
Regulation = (dV_o_reg / dI_i) * 100;
printf("output resis. = \%f ohm", R_out);
printf("\nregulation. = \%f \%", Regulation);
```
Chapter 7

Amplifiers

Scilab code Exa 7.1 Determine voltage gain and current gain and power gain

```matlab
1 //Ex:7.1
2 clc;
3 clear;
4 close;
5 I_i=4;
6 V_o=2;
7 V_i=50*10^-3;
8 I_o=200;
9 A_v=V_o/V_i;
10 A_i=I_o/I_i;
11 printf(" Volt gain = %f ",A_v);
12 printf("\n Current gain = %f ",A_i);
13 printf("\n Power gain = %f ",A_i*A_v);
```

Scilab code Exa 7.2 Determine voltage gain and upper and lower cutoff freq

55
//Ex: 7.2
clc;
clear;
close;
A_v_max = 35;
A_v_cutoff = 0.707 * A_v_max;
printf(" Mid-band Volt gain = %f ", A_v_cutoff);
printf(" \n upper freq = 590Hz & lower freq = 57Hz ");

Scilab code Exa 7.3 Determine overall voltage gain with negative feedback

//Ex: 7.3
clc;
clear;
close;
A = 50;
b = 0.1;
G = A / (1 + b * A);
printf(" overall Volt gain = %f ", G);

Scilab code Exa 7.4 Determine percentage increase in overall voltage gain

//Ex: 7.4
clc;
clear;
close;
A = 50;
A_new = A + 0.2 * A;
b = 0.1;
G = A_new / (1 + b * A_new);
dG = 8.33 - G / 8.33;
```scilab
printf(" percentage change in overall volt gain = %f \\
%%",dG);

Scilab code Exa 7.5 Determine amount of feedback required

1  //Ex:7.5
2  clc;
3  clear;
4  close;
5  A=100;
6  G=20;
7  b=(1/G)-(1/A);
8  printf("amount of feedback required = %f ",b);

Scilab code Exa 7.6 Determine output voltage produced by input signal of 10mV

1  //Ex:7.6
2  clc;
3  clear;
4  close;
5  h_oe=80*10^-6;
6  R_l=10000;
7  I_f=320*10^-6;
8  I_c=I_f*(1/h_oe)/((1/h_oe)+R_l);
9  V_out=I_c*R_l;
10 printf("Output voltage = %f V",V_out);

Scilab code Exa 7.7 Determine of load resistance required

57
```
Scilab code Exa 7.8 Determine static value of current gain and voltage gain

```scilab
//Ex:7.8
clc;
clear;
close;
b=200;
h_ie=1.5*10^-3;//in ohms
h_fe=150;
R_l=b*h_ie/h_fe;
printf("Load resistance = %d ohms",R_l);
```

Scilab code Exa 7.9 Determine quiescent value of collector current and voltage and peak to peak output voltage

```scilab
//Ex:7.9
clc;
clear;
close;
V=9;
V_e=2;
R4=1000;
R2=33*10^-3;
R1=68000;
I_r1=(V-V_b)/R1;
R3=2.2*10^-3;
I_b=15.1*10^-6;
I_c=2.0151*10^-3;
V_r3=I_c*R3;
V_c=V-V_r3;
printf("Collector voltage = %f V",V_c);
```
1 //Ex:7.9
2 clc;
3 clear;
4 close;
5 V_pp=14.8-3.3;
6 printf("Collector quiescent voltage = 9.2 V");
7 printf("\nCollector quiescent current = 7.3mA");
8 printf("\nOutput peak-peak voltage = %f V",V_pp);
Chapter 8
Operational Amplifiers

Scilab code Exa 8.1 Determine the value of open loop voltage gain

```scilab
//Ex:8.1
clc;
clear;
close;
V_out=2;
V_in=400*10^-6;
A_v=V_out/V_in;
A_v_dB=ceil(20*(log(A_v)/log(10)));
printf("open loop voltage gain = %d dB",A_v_dB);
```

Scilab code Exa 8.2 Determine the value of input current

```scilab
//Ex:8.2
clc;
clear;
close;
V_in=5*10^-3;
R_in=2*10^-6;
```
I_in = V_in / R_in;
printf("Input current = %e A", I_in);

Scilab code Exa 8.3 Determine the slew rate of device

1 //Ex:8.3
2 clc;
3 clear;
4 close;
5 V_out=10;
6 t=4;
7 SR=V_out/t;
8 printf("Slew rate = %f V/us", SR);

Scilab code Exa 8.4 Determine the time taken to change level

1 //Ex:8.4
2 clc;
3 clear;
4 close;
5 V_out=2;
6 SR=15; // in V/us
7 t=V_out/SR;
8 printf("Time taken = %f us", t);

Scilab code Exa 8.6 Determine the circuit parameters using opamps

1 //Ex:8.6
2 clc;
3 clear;
4 close;
5 R_in=10000;
6 f1=250;
7 f2=15000;
8 C_in=0.159/(f1*R_in);
9 C_f=0.159/(f2*R_in);
10 printf ("C_f = %e F",C_f);
Chapter 9

Oscillators

Scilab code Exa 9.1 Determine the freq of oscillation

```scilab
//Ex:9.1
clc;
clear;
close;
C=10*10^-9;
R=10000;
f=(1/(2* %pi * sqrt (6) *C*R));
printf("The freq of oscillation = %f Hz",f);
```

Scilab code Exa 9.2 Determine the output freq

```scilab
//Ex:9.2
clc;
clear;
close;
r1=1000;
r2=1000;
c=100*10^-9;
```
f=(1/(2*%pi*c*r1));
printf("The freq of oscillation at 1 kohm= %f Hz",f);
R1=6000;
R2=6000;
F=(1/(2*%pi*c*R1));
printf("\nThe freq of oscillation at 6 kohm= %f Hz",F);

Scilab code Exa 9.3 Determine the value of R3 and R4

//Ex: 9.3
clc;
clear;
close;
f=1000;
t=1/f;
C=10*10^-9;
R=t/(1.4*C);
printf("R= \%d kohm",R/1000);
Chapter 12

The 555 timer

Scilab code Exa 12.1 Determine the parameters of timer circuit

```plaintext
//Ex:12.1
clc;
clear;
close;
C=100*10^-9;
t_on=10*10^-3;
R=(t_on/(1.1*C))/1000;
printf("R= %fkohm",R);
```

Scilab code Exa 12.2 Determine the parameters of timer circuit that produce 5V

```plaintext
//Ex:12.2
clc;
clear;
close;
C=100*10^-6;
t_on=60;
```
7 \(R = \frac{t_{on}/(1.1*C)}{1000}; \)
8 \textit{printf}("R= %f kohm",R);
Chapter 13

Radio

Scilab code Exa 13.1 Determine the frequency of radio signal of wavelength 15m

1 //Ex:13.1
2 clc;
3 clear;
4 close;
5 c=3*10^8;
6 wl=15;
7 f=c/wl;
8 printf("The frequency =\%d Hz",f);

Scilab code Exa 13.2 Determine the frequency of radio signal of 150MHz

1 //Ex:13.2
2 clc;
3 clear;
4 close;
5 c=3*10^8;
6 f=150*10^6;
Scilab code Exa 13.3 Determine the velocity of propagation of radio signal of 30MHz and 8m wavelength

```scilab
1 //Ex:13.3
2 clc;
3 clear;
4 close;
5 wl=8;
6 f=30*10^6;
7 v=f*wl;
8 printf("The velocity of propagation =%d m/s",v);
```

Scilab code Exa 13.4 Determine the two possible BFO freq

```scilab
1 //Ex:13.4
2 clc;
3 clear;
4 close;
5 f_rf=162.5;  // in kHz
6 f_af=1.25;   // in kHz
7 f_bfo_max=f_rf+f_af;
8 f_bfo_min=f_rf-f_af;
9 printf("The two possible BFO freq. =%f kHz and %f kHz",f_bfo_max,f_bfo_min);
```

Scilab code Exa 13.5 Determine the range the local oscillator be tuned
Scilab code Exa 13.6 Determine the range the local oscillator be tuned

```scilab
clc; clear; close;
f_rf_1=88; // in MHz
f_rf_2=108; // in MHz
f_if=10.7; // in MHz
f_lo_1=f_rf_1+f_if;
f_lo_2=f_rf_2+f_if;
printf("The range local oscillator be tuned =%f MHz & %f MHz",f_lo_1,f_lo_2);
```

Scilab code Exa 13.7 Determine the radiated power

```scilab
clc; clear; close;
r=12; // in ohms
```
Scilab code Exa 13.8 Determine the power and radiation efficiency

i = 0.5; // in amps
P_r = i * i * r; // in W
printf("Power radiated = \%d W", P_r);

cclc;
clear;
close;
r = 2; // in ohms
i = 0.5; // in amps
P_r = 4; // in W
P_loss = i * i * r;
P_eff = (P_r / (P_r + P_loss)) * 100;
printf("The power loss = \%f W", P_loss);
printf("\n The power loss = \%f \%\\", P_eff);
